
CMPT 441-711: Homework 3

Instructor: Prof. Cenk Sahinalp

Question 11.2

We modify the HMM by splitting states F (for fair coin) and L (for loaded coin) into ten states F1 . . . F10

and L1 . . . L10 respectively. Each of these states will have the same emit probabilities as the state F , L.
All incoming edges in HMM which were pointing to the F will now point to the F1, and all outgoing edges
(including self-loops) from F will become outgoing edges of F10 (all those edges will retain same probability).
For each Fi, i < 10 we’ll add only one outgoing edge to Fi+1 with probability 1 (all other outgoing edges
from Fi will have probability 0). The same rule applies for L states. This way, we force the HMM to stay
in state L without visiting state F at least 10 times. Now, we can apply Viterbi’s algorithm on this HMM
without any modifications.

Question 11.4

We will simply run Viretbi’s algorithm for the given HMM, with the given sequence. We’ll just add start
state S which does not emit anything (i.e. emission probabilities are zero), and which points to states α and
β with probability 0.5. Let Ss,i be the maximum probability for emission of i characters that ends up in the
state s. Ss,i will be obtained by the Viterbi’s log recurrence:

Ss,i = log es(xi) + max
t∈{S,α,β}

{St,i−1 + log ats}.

We will also keep matrix ps,i as a state matrix, where

ps,i = argmax{St,i−1 + log ats}.

After running the Viterbi’s algorithm for start state α, we’ll obtain following matrices (we’ll use base 2
logarithm):

Ss,i G G C T
S 0 −∞ −∞ −∞ −∞
α −∞ −2.32193 −3.79586 −7.26979 −10.7437
β −∞ −3.32193 −5.79586 −7.68483 −9.5738

ps,i G G C T
α S α α α
β S β β β

As Sβ,4 > Sα,4, best possible path in HMM is S → β → β → β → β with probability

2× 2−9.5738 = 2× 6561

5000000

(we multiply result with 2 because we included 1/2 probability of arriving from state S to state β)

Question 11.5

As each coin toss is independent, probability of some sequence is simply the product of probabilities for
each particular outcome. We need to compare two probabilities: (i) if we start with fair coin, and (ii) if we

1



start with loaded coin. In out sequence we have 10 tails and 7 heads. Thus, if we choose fair coin, sequence
probability is

PF =

(
1

2

)10 (
1

2

)7

=
1

217
⇒ logPF = −17.

In the same way we have

PH =

(
3

4

)10 (
1

4

)7

=
310

417
⇒ logPH = 10 log 3− 17 log 22 = 10 log 3− 34 = 15.85− 34 = −18.15.

Since PF > PL, thus the dealer has chosen the fair most probably.

Question 11.6

� Our alphabet is Σ = {1, 2, 3}. States are Q = {S,D1, D2, E} (S for start and E for end state). Tran-
sition and emission probabilities are given in the table below:

as,t S D1 D2 E
S 0 1/2 1/2 0
D1 0 1/2 1/4 1/4
D2 0 1/4 1/2 1/4
E 0 0 0 0

es(·) S D1 D2 E
1 0 1/2 1/4 0
2 0 1/4 1/2 0
3 0 1/4 1/4 0

� We’ll use Viterbi’s algorithm with backtracking matrix, as in previous problems. After running the
Viterbi’s algorithm our matrices are:

as,t 1 1 2 1 2 2
S 0 −∞ −∞ −∞ −∞ −∞ −∞
D1 −∞ −2 −4 −7 −9 −12 −15
D2 −∞ −3 −6 −7 −10 −12 −14

ps,t 1 1 2 1 2 2
D1 S D1 D1 D1 D1 D1

D2 S D1, D2 D1 D2 D1, D2 D2

Optimal log probability is obviously −14− 2 = −16 (we need to include switching to the E state), so
probability is 1/216 (note that matrix a is log-matrix).

� We can observe two best paths from matrix p:

– S → D1 → D1 → D1 → D1 → D2 → D2 → E

– S → D1 → D1 → D2 → D2 → D2 → D2 → E

Question 5

This algorithm is just a slight modification of the Viterbi algorithm. We need to ensure that we go through
state node q at step i.

First, we compute all the values of DP matrix up to step i using a standard Viterbi algorithm. Then, for
the i+ 1st step we compute the value for each state k using formula

DP [k] [i+ 1] = log (ek (xi+1)) +DP [q] [i] + log (aqk)

and then we continue with standard Viterbi algorithm for steps i+ 2, i+ 3, . . . , N .

2



Question 6

Probability of Xi being aligned with Yj is the same as the probability of being in state m at step (i, j) and
emitting symbols jointly. We already know that

P [πi,j = M | X,Y ] =
fM (i, j) · bM (i, j)

P [X,Y ]
,

where fM and bM are forward and backward probabilities for ending in state M (match, alignment), and
P [X,Y ] is the probability of generating sequences X and Y over all possible paths. We also know (lectures,
book) how to compute all values of fM and bM , and P [X,Y ] in O (n ·m) time by using the following two
formulas:

fq (i, j) = eq (i, j) · [fX (i− 1, j) · aXq + fY (i, j − 1) · aY q + fM (i− 1, j − 1) · aMq]

bq (i, j) = eX (i+ 1, j)·bX (i+ 1, j)·aqX+eY (i, j + 1)·bY (i+ 1, j + 1)·aqY +eM (i+ 1, j + 1)·bM (i+ 1, j + 1)·aqM

In the end, desired answer is

P [X,Y ] = [fX (n,m) + fY (n,m) + fM (n,m)] · τ,

where τ denotes the weight to the end node.

3


