Pairwise Alignment with HMMs

An HMM for denoting gap - matches, mismatches

The most probable path is the optimal alignment.

Viterbi algorithm:

Let the "Begin" state be "M".

- \(v^*(i,j) \) : probabilities
- \(V^*(i,j) \) : log of probabilities

Initialize: \(V^m(0,0) = 1 \), all other \(v^*(i,0), v^*(0,i) = 0 \)

Recurrence: \(i = 1 \ldots n, j = 1 \ldots m \)

\[
V^m(i,j) = P_{xiyj} \max \left\{ (1-2\delta-2\gamma) V^m(i-1,j-1), (1-\delta-3\gamma) V^x(i-1,j-1), (1-\gamma-3\delta) V^y(i-1,j-1) \right\}
\]

\[
v^x(i,j) = q_{xj} \max \left\{ \delta V^m(i-1,j), \varepsilon V^x(i-1,j) \right\}
\]

\[
v^y(i,j) = q_{yj} \max \left\{ \delta V^m(i,j-1), \varepsilon V^y(i,j-1) \right\}
\]

HMM with above Viterbi algorithm will give the exact same output with NW algorithm:

\[
v^E = 2 \max (V^m(n,m), V^x(n,m), V^y(n,m))
\]
If one wants to be able to generate sequences with variable length (affine gap weights) then one should have:

![Diagram](image)

This creates x_i's and y_j's independently. According to this model:

$$\Pr(x, y | R) = \eta^n (1 - \eta)^m \left[\prod_{i=1}^{n} q_{x_i} \right] \eta^{m} \left[\prod_{j=1}^{m} q_{y_j} \right]$$

One can then define:

$$s(a,b) = \log \frac{p_{ab}}{q_a q_b} + \log \frac{(1 - 2 \beta - 2)}{(1 - \eta)^2}$$

$$d = -\log \frac{s(1 - 3 - 2)}{(1 - \eta)(1 - 2 - 2)}$$

$$e = -\log \frac{e}{1 - 2}$$

to write down Viterbi's algorithm in standard DP formulation:

Initialize. $V^m(0,0) = 2 \log \eta$, $V^x(0,0) = V^y(0,0) = -\infty$

All $V^*(i,j-1) = V^*(i-1,j) = -\infty$

$$V^m(i,j) = s(x_i, y_j) + \max \left\{ V^m(i-1,j-1) + d, V^x(i-1,j-1) + e \right\}$$

$$V^x(i,j) = \max \left\{ V^m(i-1,j) - d, V^x(i-1,j) - e \right\}$$

$$V^y(i,j) = \max \left\{ V^m(i,j-1) - d, V^y(i,j-1) - e \right\}$$

$$V = \max (V^*(n,m))$$
Multiple Sequence Alignment via HMMs

Profile HMM. Define match states M_1, \ldots, M_L which will be those states that would match a given position of any string to the profile. Also define insertion states I_1, \ldots, I_L and deletion states D_1, \ldots, D_L.

Given string x_1, \ldots, x_m, one can match it against this "profile" HMM as follows:

* let $V_{M_j}(i)$ be the log probability of the "best path" of matching x_1, \ldots, x_i to the HMM ending with M_j - emitting x_i.
* Similarly $V_{I_j}(i)$ be the log probability of the "best path" of matching x_1, \ldots, x_i to the HMM ending with I_j - emitting x_i.
* Finally let $V_{D_j}(i)$ be the log probability of the "best path" ending with D_j - no emission.
\[v_{\text{begin}}(0) = 0 \quad \text{(these are log probabilities)} \]

Then:
\[v_{M_j}(i) = \log e_{M_j}(x_i) + \max \left\{ v_{M_j}(i-1) + \log(a_{M_j-1,M_j}), v_{I_j}(i-1) + \log(a_{I_j-1,M_j}), v_{D_j}(i-1) + \log(a_{D_j-1,M_j}) \right\} \]
\[v_{I_j}(i) = \log e_{I_j}(x_i) + \max \left\{ v_{M_j}(i-1) + \log(a_{M_j-1,I_j}), v_{I_j}(i-1) + \log(a_{I_j-1,I_j}), v_{D_j}(i-1) + \log(a_{D_j-1,I_j}) \right\} \]
\[v_{D_j}(i) = \max \left\{ v_{M_j}(i) + \log(a_{M_j-1,D_j}), v_{I_j}(i) + \log(a_{I_j-1,D_j}), v_{D_j}(i-1) + \log(a_{D_j-1,D_j}) \right\} \]

Score \((X)\) = \max \left\{ v_{M_j}(m) + \log(a_{M_j-1,\text{end}}), v_{I_j}(m) + \log(a_{I_j-1,\text{end}}), v_{D_j}(m) + \log(a_{D_j-1,\text{end}}) \right\} \]

Forward - Backward Probabilities for Profile HMM

\[f_{M_j}(i) = \log [\Pr(X_1, \ldots, x_i; \text{ending at } M_j)] \]
\[f_{I_j}(i) = \log [\Pr(X_1, \ldots, x_i; \text{ending at } I_j)] \]
\[f_{D_j}(i) = \log [\Pr(X_1, \ldots, x_i; \text{ending at } D_j)] \]

\[b_{M_j}(i) = \log [\Pr(x_{i+1}, \ldots, x_m; \text{beginning at } M_j)] \]
\[b_{I_j}(i) = \log [\Pr(x_{i+1}, \ldots, x_m; \text{beginning at } I_j)] \]
\[b_{D_j}(i) = \log [\Pr(x_{i+1}, \ldots, x_m; \text{beginning at } D_j)] \]
Recursion for forward probabilities:
\[
\begin{align*}
 f_{m_j}(i) &= \log(e_{m_j}(x_i)) + \log \left[a_{m_j-1,m_j} \cdot 2 f_{m_j-1}(i-1) \right. \\
 & \quad + a_{I_{j-1},m_j} \cdot 2 f_{I_{j-1}}(i-1) \] \\
 & \quad \left. + a_{D_{j-1},m_j} \cdot 2 f_{D_{j-1}}(i-1) \right] \\
 f_{I_{j}}(i) &= \log(e_{I_{j}}(x_i)) + \log \left[a_{m_j-1,I_{j}} \cdot 2 f_{m_j-1}(i-1) \right. \\
 & \quad + a_{I_{j-1},I_{j}} \cdot 2 f_{I_{j-1}}(i-1) \] \\
 & \quad \left. + a_{D_{j-1},I_{j}} \cdot 2 f_{D_{j-1}}(i-1) \right] \\
 f_{D_{j}}(i) &= \log \left[a_{m_j-1,D_{j}} \cdot 2 f_{m_j-1}(i-1) \right. \\
 & \quad + a_{I_{j-1},D_{j}} \cdot 2 f_{I_{j-1}}(i-1) \] \\
 & \quad \left. + a_{D_{j-1},D_{j}} \cdot 2 f_{D_{j-1}}(i-1) \right]
\end{align*}
\]

Backward probabilities are derived similarly.

Bauu - Welch procedure

\[\hat{r}_{\text{estimates}} \] emission
\[
\begin{align*}
 \hat{E}_{m_j}(a) &= \frac{1}{\Pr(x_1 \ldots x_m)} \sum_{j \mid x_j = a} f_{m_j}(j) \cdot b_{m_j}(j) \\
 \hat{E}_{I_{j}}(a) &= \frac{1}{\Pr(x_1 \ldots x_m)} \sum_{j \mid x_j = a} f_{I_{j}}(j) \cdot b_{I_{j}}(j)
\end{align*}
\]
for $S_i = m_i, I_i$ or D_i:

$$A_{S_i, m_{i+1}} = \frac{1}{Pr(x_{i...n})} \sum_{v_j} f_{S_i}(j) a_{S_i, m_{i+1}} e_{m_{i+1}}(x_{j+1}) b_{m_{i+1}}(j)$$

$$A_{S_i, I_i} = \frac{1}{Pr(x_{i...n})} \sum_{v_j} f_{S_i}(j) a_{S_i, I_i} e_{I_i}(x_{j+1}) b_{I_i}(j+1)$$

$$A_{S_i, D_{i+1}} = \frac{1}{Pr(x_{i...n})} \sum_{v_j} f_{S_i}(j) a_{S_i, D_{i+1}} b_{D_{i+1}}(j)$$

Given a profile HMM P, it is possible to use it for multiply aligning sequences $X_1...X_n$:

1) Align each X_i separately to P
2) Merge the alignments into one joint alignment by having a unique column for each insert.

If P is not known:

1) Choose a length L for the profile and initialize the emission and transition probabilities
2) Apply B-W algorithm to "learn" the correct parameters
3) Apply the above method for aligning the sequences to each other.
More Heuristics:

Gibbs Sampling for locating a common pattern/motif and finding a local multiple alignment

Input: sequences S_1, \ldots, S_n; integers w

Output: Find for each S_i a substring of at most w characters so that the similarity between n substrings are maximized.

1) let q_i, \ldots, q_n be starting positions of these substrings.
2) let c_{ij} be the number of occurrences of symbol j among the i^{th} positions of n substrings.
3) let q_{ij} be the probability of symbol j to occur at the i^{th} position of the pattern.
4) let p_j be the frequency of the symbol j in all sequences of S.

We would like to maximize:

$$\text{Score} = \sum_{i=1}^{n} \sum_{j \in \mathcal{S}} c_{ij} \log \frac{q_{ij}}{p_j}$$

We follow the iterative procedure:

1) Randomly choose q_1, \ldots, q_n.
2) Randomly choose $1 \leq z \leq n$ and calculate c_{ij}, q_{ij} and p_j values for the strings $S \setminus S_z$.
3) Find best substring of S_z according to the model and determine new q_z by applying local alignment of S_z against profile of current pattern.
4) Repeat steps 2 & 3 until improvement is small.